Advertisements
Advertisements
Question
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
Solution
ΔABC is an isosceles right-angled triangle.
∴ AC2
= AB2 + BC2
= 62 + 62
= 36 + 36
= 72
⇒ AC = `6sqrt(2)"cm"`
cos C
= `"BC"/"AC"`
= `(6)/(6sqrt(2)`
= `(1)/sqrt(2)`.
APPEARS IN
RELATED QUESTIONS
If tan θ = `20/21` show that `((1-sin θ + cos θ))/((1+ sin θ +cos θ)) = 3/7`
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
sin20° = cos ______°
tan 30° × tan ______° = 1
cos 40° = sin ______°
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
From the given figure, find the values of tan C
Statement A (Assertion): For 0 < θ ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Statement R (Reason): cosec2 θ – cot2 θ = 1