Advertisements
Advertisements
प्रश्न
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
उत्तर
ΔABC is an isosceles right-angled triangle.
∴ AC2
= AB2 + BC2
= 62 + 62
= 36 + 36
= 72
⇒ AC = `6sqrt(2)"cm"`
cos C
= `"BC"/"AC"`
= `(6)/(6sqrt(2)`
= `(1)/sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`cot^2 30^0-2cos^2 30^0-3/4 sec^2 45^0 +1/4 cosec^2 30^0`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
`(cos 28°)/(sin 62°)` = ?
Given: cos A = 0.6; find all other trigonometrical ratios for angle A.
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
If sinA = 0.8, find the other trigonometric ratios for A.
In the given figure, ΔABC is right angled at B.AD divides BC in the ratio 1 : 2. Find
(i) `("tan"∠"BAC")/("tan"∠"BAD")` (ii) `("cot"∠"BAC")/("cot"∠"BAD")`
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.