Advertisements
Advertisements
Question
If cosec θ = `(29)/(20)`, find the value of: cosec θ - `(1)/("cot" θ)`
Solution
Consider ΔABC, where ∠A = 90°
⇒ cosec θ = `"Hypotenuse"/"Perpendicular" = "BC"/"AB" = (29)/(20)`
By Pythagoras theorem,
BC2 = AB2 + AC2
⇒ AC2 = BC2 - AB2
= 292 - 202
= 841 - 400
= 441
⇒ AC = 21
Now,
sec θ = `"Hypotenuse"/"Base" = "BC"/"AC" = (29)/(21)`
tan θ = `"Perpendicular"/"Base" = "AB"/"AC" = (20)/(21)`
⇒ cot θ = `(1)/"tan θ " = (21)/(20)`
`"cosec" θ - (1)/"cot θ"`
= `(29)/(20) - (1)/(21/20)`
= `(29)/(20) - (20)/(21)`
= `(609 - 400)/(420)`
= `(209)/(420)`.
APPEARS IN
RELATED QUESTIONS
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
In the given figure;
BC = 15 cm and sin B = `(4)/(5)`
- Calculate the measure of AB and AC.
- Now, if tan ∠ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B - `1/cos^2 "B" = – 1 .`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y