Advertisements
Advertisements
Question
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
Solution
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that sin 𝜃 = `"𝑃𝑟𝑒𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟 "/"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒" = (AB)/ (AC) = sqrt(3)/2`
So, if AB = `sqrt(3)`𝑘, 𝑡ℎ𝑒𝑛 𝐴𝐶 = 2𝑘, 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟.
Now, using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2`
`⟹ BC^2 = AC^2 − AB^2 = (2K)^2 − (sqrt(3)K)^2`
`⟹ BC^2 = 4K^2 − 3K^2 = K^2`
⟹ BC = k
Now, finding the other T-rations using their definitions, we get:
Cos 𝜃 =` (BC)/(AC) = K/(2K)= 1/2`
Tan 𝜃 =`(AB)/(BC) = (sqrt(3K))/K = sqrt(3)`
∴ cot 𝜃 =`1/(Tan θ ) = 1/sqrt(3), cosec θ = 1/(sin θ) = 2/(sqrt(3)) and sec θ = 1/ (cos θ) = 2 `
APPEARS IN
RELATED QUESTIONS
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`