Advertisements
Advertisements
Question
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
Solution
tan A+cotA = 5
Squaring both sides
(tan A +cotA)2 = 52
tan2 A+ cot2 A+2 tan A. cotA = 25
tan2 A+cot2 A+2 tan A. `1/ tan "A"` = 25
tan2 A+cot2 A = 23
APPEARS IN
RELATED QUESTIONS
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
Evaluate:
sin600 cos300 + cos600 sin300
`(cos 28°)/(sin 62°)` = ?
cos 40° = sin ______°
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot2P - cosec2P
From the given figure, find the values of cosec C
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.