Advertisements
Advertisements
Question
Given: 4 sin θ = 3 cos θ ; find the value of:
(i) sin θ (ii) cos θ
(iii) cot2 θ - cosec2 θ .
(iv) 4 cos2θ- 3 sin2θ+2
Sum
Solution
Consider the diagram below :
4 sin θ = 3cos θ
tan θ =`(3)/(4)`
i.e.`"perpendicular"/"base"= (3)/(4) ⇒ "BC"/"AB" = (3)/(4)`
Therefore if length of BC = 3x, length of AB = 4x
Since
AB2 + BC2 = AC2 ... [ Using Pythagoras Theorem]
(4x)2 + (3x)2 = AC2
AC2 = 25x2
∴ AC = 5x ...( hypotenuse)
(i) sin θ = `"BC"/"AC" = (3)/(5)`
(ii) cos θ = `"AB"/"AC" = (4)/(5)`
(iii) cot θ = `"AB"/"BC" = (4)/(3)`
cosec θ = `"AC"/"BC" = (5)/(3)`
Therefore
cot2θ – cosec2θ
= `(4/3)^2 – (5/3)^2`
= `(16 – 25)/(9)`
= `– (9)/(9)`
= – 1
(iv) 4 cos2 θ – 3sin2 θ + 2
= `4(4/5)^2 – 3(3/5)^2+2`
= `(64)/(25) – (27)/(25) + 2 `
= `(64 – 27 + 50)/(25)`
= `(87)/(25)`
= `3(12)/(25)`
shaalaa.com
Notation of Angles
Is there an error in this question or solution?