English

Given: 4 Sin θ = 3 Cos θ ; Find the Value Of: Sin θ Cos θ Cot2 θ - Cosec2 θ . (Iv) 4 Cos2θ- 3 Sin2θ+ 2 - Mathematics

Advertisements
Advertisements

Question

Given: 4 sin θ = 3 cos θ ; find the value of:
(i) sin θ (ii) cos θ
(iii) cot2 θ - cosec2 θ .
(iv) 4 cos2θ- 3 sin2θ+2

Sum

Solution

Consider the diagram below :

4 sin θ = 3cos θ
tan θ =`(3)/(4)`

i.e.`"perpendicular"/"base"= (3)/(4) ⇒ "BC"/"AB" = (3)/(4)`

Therefore if length of BC = 3x, length of AB = 4x

Since
AB2 + BC2 = AC2  ... [ Using Pythagoras Theorem]

(4x)2 + (3x)2 = AC2

AC2 = 25x2

∴ AC = 5x          ...( hypotenuse)

(i) sin θ = `"BC"/"AC" = (3)/(5)`

(ii) cos θ = `"AB"/"AC" = (4)/(5)`

(iii) cot θ = `"AB"/"BC" = (4)/(3)`

cosec θ = `"AC"/"BC" = (5)/(3)`

Therefore

cot2θ – cosec2θ

= `(4/3)^2 – (5/3)^2`

= `(16 – 25)/(9)`

= `– (9)/(9)`

= – 1

(iv) 4 cos2 θ – 3sin2 θ + 2

= `4(4/5)^2 – 3(3/5)^2+2`

= `(64)/(25) – (27)/(25) + 2 `

= `(64 – 27 + 50)/(25)`

= `(87)/(25)`

= `3(12)/(25)`

shaalaa.com
Notation of Angles
  Is there an error in this question or solution?
Chapter 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (B) [Page 286]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (B) | Q 12 | Page 286
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×