Advertisements
Advertisements
प्रश्न
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
उत्तर
tan A+cotA = 5
Squaring both sides
(tan A +cotA)2 = 52
tan2 A+ cot2 A+2 tan A. cotA = 25
tan2 A+cot2 A+2 tan A. `1/ tan "A"` = 25
tan2 A+cot2 A = 23
APPEARS IN
संबंधित प्रश्न
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR