Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
उत्तर
tan C = `(5)/(12)`
tan C = `"Perpendicular"/"Base" = (5)/(12)`
By Pythagoras theprem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
(Hypotenuse) = `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((5)^2 + (12)^2`
= `sqrt(25 + 144)`
= `sqrt(169)`
= 13
cot C = `(1)/"tan C" = (12)/(5)`
sin C = `"Perpendicular"/"Hypotenuse" = (5)/(13)`
cos C = `"Base"/"Hypotenuse" = (12)/(13)`
sec C = `(1)/"cosC" = (13)/(12)`
cosec C = `(1)/"sin C" = (13)/(5)`.
APPEARS IN
संबंधित प्रश्न
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If a right ΔABC , right-angled at B, if tan A=1 then verify that 2sin A . cos A = 1
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cotA = `(1)/(11)`
If sin θ = `(8)/(17)`, find the other five trigonometric ratios.
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A