Advertisements
Advertisements
प्रश्न
If a right ΔABC , right-angled at B, if tan A=1 then verify that 2sin A . cos A = 1
उत्तर
We have,
Tan 𝐴 = 1
⟹`sin A/cosA= 1`
⟹ sin 𝐴 = cos 𝐴
⟹ sin 𝐴 − cos 𝐴 = 0
Squaring both sides, we get
(𝑠𝑖𝑛𝐴 − 𝑐𝑜𝑠𝐴)2 = 0
⟹ sin2 𝐴 + cos2 𝐴 − 2 sin 𝐴 . cos 𝐴 = 0
⟹ 1 − 2 sin 𝐴 . cos 𝐴 = 0
∴ 2 sin 𝐴 . 𝑐𝑜𝑠𝐴 = 1
APPEARS IN
संबंधित प्रश्न
Given 15 cot A = 8. Find sin A and sec A.
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
From the given figure, find the values of cos C
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`