Advertisements
Advertisements
प्रश्न
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
उत्तर
In Δ𝑃𝑄𝑅, ∠𝑄 = 900,
Using Pythagoras theorem, we get
𝑃𝑄 = `sqrt(PR^2 − QR^2)`
= `sqrt ((x + 2)^2 − x^2)`
= `sqrt(x^2 + 4x + 4 − x^2)`
= `sqrt(4 (x+ 1))`
= `2sqrt(x + 1)`
Now,
(i) `(sqrt(x+1) cot theta`
=`(sqrt(x+1))xx(QR)/(PQ)`
=`(sqrt(x+1))xx x/(2 sqrt(x+1))`
=`x/2`
(ii) `(sqrt(x^3+x^2)) tan theta`
= `(sqrt(x^2(x+1)))xx(QR)/(PQ)`
`=x sqrt((x+1))xx x/(2sqrt(x+1)`
= `x^2/2`
(iii) cos θ
=`(PQ)/(PR) theta=(2sqrt(x+1))/(x+2)`
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If sin A = `9/41` find all the values of cos A and tan A
If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.
Evaluate:
`cot^2 30^0-2cos^2 30^0-3/4 sec^2 45^0 +1/4 cosec^2 30^0`
tan 30° × tan ______° = 1
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.