Advertisements
Advertisements
प्रश्न
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
उत्तर
In Δ𝑃𝑄𝑅, ∠𝑄 = 900,
Using Pythagoras theorem, we get
𝑃𝑄 = `sqrt(PR^2 − QR^2)`
= `sqrt ((x + 2)^2 − x^2)`
= `sqrt(x^2 + 4x + 4 − x^2)`
= `sqrt(4 (x+ 1))`
= `2sqrt(x + 1)`
Now,
(i) `(sqrt(x+1) cot theta`
=`(sqrt(x+1))xx(QR)/(PQ)`
=`(sqrt(x+1))xx x/(2 sqrt(x+1))`
=`x/2`
(ii) `(sqrt(x^3+x^2)) tan theta`
= `(sqrt(x^2(x+1)))xx(QR)/(PQ)`
`=x sqrt((x+1))xx x/(2sqrt(x+1)`
= `x^2/2`
(iii) cos θ
=`(PQ)/(PR) theta=(2sqrt(x+1))/(x+2)`
APPEARS IN
संबंधित प्रश्न
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
If sinA = 0.8, find the other trigonometric ratios for A.
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of sin x