Advertisements
Advertisements
प्रश्न
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
उत्तर
Consider the diagram below :
sec A =`sqrt2`
i.e.`"hypotenuse"/"base" =(sqrt2)/(1) ⇒ "AC"/"AB" =(sqrt2)/(1)`
Therefore if length of AB = x, length of AC =`sqrt2`
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem]
(x)2 + BC2 = (`sqrt2"x")^2`
BC2 = 2x2 – x2 = x2
∴ BC = x ...(perpendicular)
Now
tan A = `"perpendicular"/"base" = ("x")/("x") =1`
sin A = `"perpendicular"/"hypotenuse" = ("x")/(sqrt2"x") = (1)/(sqrt2)`
cos A = `"base"/"hypotenuse" = ("x")/(sqrt2"x") = (1)/(sqrt2)`
Therefore
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
= `(3(1/sqrt2)^2+5(1)^2)/(4(1)^2 – (1/sqrt2)^2)`
= `(13/2)/(7/2)`
= `(13)/(7)`
=`1(6)/(7)`
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
In ΔPQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
If cot θ = 2 find all the values of all T-ratios of θ .
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
`(cos 28°)/(sin 62°)` = ?
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A
In the given figure, ΔABC is right angled at B.AD divides BC in the ratio 1 : 2. Find
(i) `("tan"∠"BAC")/("tan"∠"BAD")` (ii) `("cot"∠"BAC")/("cot"∠"BAD")`