Advertisements
Advertisements
प्रश्न
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
उत्तर
Consider the diagram below :
cot θ = 1
i.e.`"base"/"perpendicular" = (1)/(1)`
Therefore if length of base = x, length of perpendicular = x
Since
base2 + perpendicular2 = hypotenuse2 ...[ Using Pythagooras Theorem]
(x)2 + (x)2 = hypotenuse2
hypotenuse2 = x2 + x2 = 2x
∴ hypotenuse =`sqrt2x`
Now
sin θ = `"perpendicular"/"hypotenuse" = (x)/(sqrt2x) = (1)/(sqrt2)`
tan θ = `"perpendicular"/"base" = (x)/(x) = 1`
Therefore
5tan2 θ + 2sin2 θ – 3
= `5 (1)^2 + 2 (1/sqrt2)^2 – 3`
= 5 + 1 – 3
=3
APPEARS IN
संबंधित प्रश्न
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If cos θ = `7/25` find the value of all T-ratios of θ .
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
If sin θ = `(8)/(17)`, find the other five trigonometric ratios.
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅