Advertisements
Advertisements
प्रश्न
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
उत्तर
A = 300
⇒ 2A = 2 × 300 = 600
By substituting the value of the given T-ratio, we get:
cos A = `sqrt((1+ cos^2A)/2)`
cos `30^0 = sqrt((1+cos 60^0)/2) = sqrt((1+(1/2)/2)) = sqrt((3/2)/2) =sqrt(3/4) = sqrt(3)/2`
∴ cos A = `sqrt(3)/2`
APPEARS IN
संबंधित प्रश्न
In Fig below, Find tan P and cot R. Is tan P = cot R?
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cotA = `(1)/(11)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
If cosec θ = `(29)/(20)`, find the value of: cosec θ - `(1)/("cot" θ)`