Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
उत्तर
sinB = `sqrt(3)/(2)`
sinB = `"Perpendicular"/"Hypotenuse" = sqrt(3)/(2)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
`sqrt((2)^2 - (sqrt(3))^2`
= `sqrt(4 - 3)`
= `sqrt(1)`
= 1
cosB = `"Base"/"Hypotenuse" = (1)/(2)`
tanB = `"Perpendicular"/"Base" = sqrt(3)`
secB = `(1)/"cosB"` = 2
cotB = `(1)/"tanB" = (1)/sqrt(3)`
cosecB= `(1)/"sinA" = (2)/sqrt(3)`.
APPEARS IN
संबंधित प्रश्न
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
If 3cos θ – 4sin = 2cos θ + sin θ Find tan θ.
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
Evaluate:
sin600 cos300 + cos600 sin300
From the following figure, find the values of
(i) cos A
(ii) cosec A
(iii) tan2A - sec2A
(iv) sin C
(v) sec C
(vi) cot2 C - ` 1 / sin^2 "c"`
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C