Advertisements
Advertisements
Question
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
Solution
Consider the figure :
sec A = `sqrt2/1`
i.e.`"hypotenuse"/"base" = "AC"/"AB" = sqrt2/1`
Therefore if length of base = x , length of hypotenuse = `sqrt2x`
Since
AB2 + BC2 = AC2 ...[Using Pythagoras Theorem]
`(sqrt2x)^2 – (x)^2 = "BC"^2`
`"BC"^2 = 2x^2 - x^2`
BC2 = x2
∴ BC = x
Now
cos A = `1/(sec "A") = 1/(sqrt2)`
sin A = `"BC"/"AC" = 1/(sqrt2)`
tan A = `"BC"/"AB"` = 1
cot A = `1/ tan "A"` = 1
Therefore
`(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A") = (3(1)^2 + 2 (1/sqrt2)^2)/ (1^2 – ( 1/sqrt2)^2)`
= `(3 + 1)/(1– (1)/(2)`
`= 4/(1/2)`
`= 4 xx 2/1`
= 8
APPEARS IN
RELATED QUESTIONS
if `cos theta = 5/13` find the value of `(sin^2 theta - cos^2 theta)/(2 sin theta cos theta) = 3/5`
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
From the given figure, find the values of sec B
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.