Advertisements
Advertisements
Question
If 8 tan A = 15, find sin A – cos A.
Solution
8 tan A = 15 find. Sin A – cos A
`tan A = 15/8`
tan A = `"Opposite side"/"adjacent side"`
Let x be the hypotenuse By applying theorem
𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2
𝑥2 = 152 + 82
𝑥2 = 225 + 64
𝑥2 = 289 ⇒ x = 17
`sin A = (AB)/(AC) = 15/17`
`sin A - cos A = 15/17 - 8/17`
`= 7/17`
APPEARS IN
RELATED QUESTIONS
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If 3 cot `theta = 2, `show that `((4 sin theta - 4 cos theta))/((2 sin theta + 6 cos theta ))=1/3`
If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.