Advertisements
Advertisements
प्रश्न
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
उत्तर
Given: `sintheta = a/b`
To show: `sec thetatantheta = sqrt((b + a)/(b - a))`
Using Trigonometric identity,
`costheta = sqrt(1 - sin^2 theta)`
`costheta = sqrt(1 - (a/b)^2)`
`costheta = sqrt((b^2 - a^2)/(b^2))`
`costheta = sqrt((b^2 - a^2)/(b))`
⇒ `sectheta = 1/(costheta) = b/(sqrt(b^2 - a^2))`
⇒ `tan theta = (sintheta)/(costheta) = a/(sqrt(b^2 - a^2))`
Now,
`sec theta + tan theta`
= `b/(sqrt(b^2 - a^2)) + a/(sqrt(b^2 - a^2))`
= `(b + a)/(sqrt((b - a)(b + a)))`
= `(sqrt(b + a)sqrt(b + a))/(sqrt(b - a)sqrt(b + a))`
= `(sqrt(b + a))/(sqrt(b - a))`
= `sqrt((b + a)/(b - a))`
APPEARS IN
संबंधित प्रश्न
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of `(1)/("sin"^2 x) - (1)/("tan"^2 x)`
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`
From the given figure, find the values of sec B