Advertisements
Advertisements
प्रश्न
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
उत्तर
Here 20 + 45° and 30 – θ° are acute angles:
We know that (90 – θ) = cos θ
sin (2θ + 45°) = sin (90 – (30 – θ))
sin (2θ + 45°) = sin (90 – 30 + θ)
sin (20 + 45°) = sin (60 + θ)
On equating sin of angle of we get
2θ + 45 = 60 + θ
2θ – θ = 60 – 45
θ = 15°
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x