Advertisements
Advertisements
प्रश्न
If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`
उत्तर
Consider ΔABC, where ∠B = 90°
⇒ sin A = `"Perpendicular"/"Hypotenuse" = "BC"/"AC" = (7)/(25)`
⇒ cosec A = `(1)/"sin A" = (25)/(7)`
By Pythagoras theorem,
AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= 252 - 72
= 625 - 49
= 576
⇒ AB - 24
Now,
cos A = `"Base"/"Hypotenuse" = "AB"/"AC" = (24)/(25)`
tan A = `"Perpendicular"/"Base" = "BC"/"AB" = (7)/(24)`
⇒ cot A = `(1)/"tan A" = (24)/(7)`
`"cos A" + (1)/"cot A"` = cos A + tan A
= `(24)/(25) + (7)/(24)`
= `(576 + 175)/(600)`
= `(751)/(600)`.
APPEARS IN
संबंधित प्रश्न
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
Given: tan A = `4/3 , "find" : ("cosec""A")/(cot "A"– sec "A")`
Use the given figure to find :
(i) sin xo
(ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.
If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
If sinA = 0.8, find the other trigonometric ratios for A.
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`