Advertisements
Advertisements
प्रश्न
If cot θ = 2 find all the values of all T-ratios of θ .
उत्तर
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that cot θ = `"𝐵𝑎𝑠𝑒"/" 𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟" = (BC)/(AB) = 2`
So, if BC = 2k, then AB = k, is a positive number.
Now, using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2 = (2K)^2 + (K)^2`
`⟹ AC^2 = 4K^2 + K^2 = 5K^2`
`⟹ AC= sqrt(5k)`
Now, finding the other T-ratios using their definitions, we get:
Sin θ = `(AB)/(AC) = 5/(sqrt(5k)) = 1/(sqrt (2)`
∴ Cos θ = `1/ (cot θ ) = 1/2 , cosec θ = 1/(sin θ ) = sqrt(5) and secθ = 1/ (cos θ) = sqrt(5)/2`
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
If a right ΔABC , right-angled at B, if tan A=1 then verify that 2sin A . cos A = 1
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y