हिंदी

In the Following Figure : Ad⊥Bc Ac = 26 Cd = 10, Bc = 42, ∠Dac = X and ∠B = Y Find the Value of : Cot X 1/Sin^2 Y – 1/Tan^2 Y 6/Cos X – 5/Cos Y + 8 Tan Y - Mathematics

Advertisements
Advertisements

प्रश्न

In the following figure: 

AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.

Find the value of :

(i) cot x

(ii) `1/sin^2 y – 1/tan^2 y`

(iii) `6/cos x – 5/cos y + 8 tan y`.

योग

उत्तर

Given the angle, DAC = 90°  and ∠ADB = 90° in the figure

⇒ AC2 = AD2 + DC2  ...(AC is hypotenuse in ΔADC)

⇒ AD2 = AC2 - DC2

⇒ AD2 = 262 – 102

∴ AD2 = 576

∴ AD2 = `sqrt(576)`

∴ AD = 24

Again, In ΔABD

⇒ AB2 = AD2 + BD2   ...(AB is hypotenuse in ΔABD)

⇒ AB2 = 242 + 322

⇒ AB2 = 576 + 1024

⇒ AB2 = `sqrt1600`

∴ AB = 40

Now
(i) cot x = `"base"/"perpendicular" = "AD"/"CD" = (24)/(10) = 2. 4`

(ii) sin y = `"perpendicular"/"hypotenuse" ="AD"/"AB" = (24)/(40) = (3)/(5)`

tan y = `"perpendicular"/"base" ="AD"/"BD" = (24)/(32) = (3)/(4)`

Therefore

`1/sin^2 y – 1/tan^2 y`

= `1/(3/5)^2 – 1/(3/4)^2`

= `(5/3)^2 - (4/3)^2`

= `(25)/(9)  –  (16)/(9)`

= `(9)/(9)`

= 1

(iii) tan y =`"perpendicular"/"base" = "AD"/"BD" = (24)/(32) = (3)/(4)`

cos x = `"base"/"hypotenuse" = "AD"/"AC" = (24)/(26) = (12)/(13)`

cos y = `"base"/"hypotenuse" = "BD"/"AB" = (32)/(40) = (4)/(5)`  

Therefore
`6/ cos x – 5/ cos y + 8tan y`

= `6/(12/13) – 5/(4/5) + 8(3/4)`

= `(13)/(2) – (25)/(4) + 6`

= `(26  –  25 + 24)/(4)`

= `(25)/(4)`

= `6(1)/(4)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (A) [पृष्ठ २८०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (A) | Q 20 | पृष्ठ २८०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×