Advertisements
Advertisements
प्रश्न
Evaluate:
cos600 cos300− sin600 sin300
उत्तर
On substituting the values of various T-ratios, we get:
cos600 cos300− sin600 sin300
=`(1/2 xx sqrt(3)/2-sqrt(3)/2 xx1/2)=(sqrt(3)/4 - sqrt(3)/4)=0`
APPEARS IN
संबंधित प्रश्न
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
tan 30° × tan ______° = 1
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In the given figure;
BC = 15 cm and sin B = `(4)/(5)`
- Calculate the measure of AB and AC.
- Now, if tan ∠ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B - `1/cos^2 "B" = – 1 .`
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A