Advertisements
Advertisements
प्रश्न
Evaluate:
sin600 cos300 + cos600 sin300
उत्तर
On substituting the values of various T-ratios, we get:
sin600 cos300 + cos600 sin300
=`(sqrt(3)/2 xxsqrt(3)/2 + 1/2 xx1/2 ) = (3/4 + 1/4 )=4/4 =1`
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)
If sin θ = `(8)/(17)`, find the other five trigonometric ratios.