Advertisements
Advertisements
प्रश्न
In the given figure;
BC = 15 cm and sin B = `(4)/(5)`
- Calculate the measure of AB and AC.
- Now, if tan ∠ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B - `1/cos^2 "B" = – 1 .`
उत्तर
Given
sin B = `(4)/(5)`
Now, sin B = `"P"/"H"`
`4/5 = "AC"/"AB"`
Therefore AC = 4x, and AB = 5x
Since
BC2 + AC2 = AB2 ...[ Using Pythagoras Theorem]
(5x)2 – (4x)2 = BC
BC2 = 9x2
∴ BC = 3x
Now
BC = 15
3x = 15
x = 5
(i) AC = 4x
= 4 x 5
= 20 cm
And
AB = 5x
= 5 x 5
= 25 cm
(ii) Given
tan ∠ADC = `(1)/(1)`
i.e. `"perpendicular"/"base" = "AC"/"CD" = (1)/(1)`
Therefore if length of perpendicular = x, length of hypotenuse = x
Since
AC2 + CD2 = AD2 ...[Using Pythagoras Theorem]
(x)2 – (x)2 = BC
AD2 = 2x2
∴ AD = `sqrt2x`
Now
AC = 20
x = 20
So
AD = `sqrt2x`
= `sqrt2` x 20
= 20`sqrt2"cm"`
And
CD = 20 cm
Now
tan B = `"AC"/"BC" = (20)/(15) = (4)/(3)`
cos B = `"BC"/"AB" = (15)/(25) = (3)/(5)`
So
tan2 B – `1/cos^2 B`
=`(4/3)^2 – 1/(3/5)^2`
= `(16)/(9) – (25)/(9)`
= `– (9)/(9)`
= – 1
APPEARS IN
संबंधित प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If A = 300 , verify that:
(i) sin 2A = `(2 tan A)/(1+tan^2A)`
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot2P - cosec2P
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y