Advertisements
Advertisements
प्रश्न
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
उत्तर
Consider the diagram below :
cosec θ =`sqrt5`
i.e.`"hypotenuse"/"perpendicular" = sqrt5/1`
Therefore, if length of hypotenuse = `sqrt5`, length of perpendicular = x
Since
base2 + perpendicular2 = hypotenuse2 ...[Using Pythagoras Theorem]
base2 + (x)2 = `(sqrt5x)^2`
base2 = 5x2 – x2
base2 = 4x2
∴ base = 2x
Now
sin θ = `"perpendicular"/"hypotenuse" = (x)/(sqrt5x) = (1)/(sqrt5)`
cos θ = `"base"/"hypotenuse" = (2)/(sqrt5x) = (2)/(sqrt5)`
(i) 2 – sin2 θ – cos2 θ
= 2 – `(1/sqrt5)^2 – (2/sqrt5)^2`
= 2 – `(1)/(5) –(4)/(5)`
= `(5)/(5)`
= 1
(ii) 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
= 2 + `1/(x/sqrt(5x))^2 – ((2x)/(sqrt5x))^2/(x/(sqrt5)^2)`
= `2 + 5 – (4/5)/(1/5)`
= 2 + 5 – 4
= 7 – 4
= 3
APPEARS IN
संबंधित प्रश्न
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If sin 3θ = cos (θ – 6°) where 3θ and θ − 6° are acute angles, find the value of θ.
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
Evaluate:
sin600 cos300 + cos600 sin300
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
`(cos 28°)/(sin 62°)` = ?
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
If sinA = 0.8, find the other trigonometric ratios for A.