Advertisements
Advertisements
प्रश्न
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
उत्तर
From the given right-angled triangle, we have:
`(BC)/(AB)= tan 30^0`
⇒`6/(AB) = 1/sqrt(3)`
⇒ `AB = 6 sqrt(3) cm`
Also, `(BC)/(AC) = sin 30^0`
⇒`6/(AC)=1/2`
⇒ `AC = (2xx6)=12 cm `
∴ AB = 6`sqrt(3)` cm and AC = 12 cm
APPEARS IN
संबंधित प्रश्न
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
From the given figure, find the values of tan C
If A + B = 90°, cot B = `3/4` then tan A is equal to ______.