हिंदी

Given: cos A = 513 Evaluate: i. AsinA –cotA2tanA ii. cotA+1cosA - Mathematics

Advertisements
Advertisements

प्रश्न

Given: cos A = 513

Evaluate:

  1. sinA cotA2tanA
  2. cotA+1cosA
योग

उत्तर

Consider the diagram below:

cos A = 513

i.e. basehypotenuse=513

ABAC=513

Therefore, if length of AB = 5x, length of AC = 13x

Since

AB2 + BC2 = AC2          ...[Using Pythagoras Theroem]

(5x)2 + BC2 = (13x)2

BC2 = 169x2 – 25x2

BC2 = 144x2

∴ BC = 12x                 ...(perpendicular)

Now

tan A = perpendicularbase=12x5x=125

sin A =  perpendicularhypotenuse =12x13x=1213

cot A = baseperpendicular=5x12x=512

(i) sinA  cotA2tanA

= 12135122(125)

= 79156.524

= 3953744

(ii) cot A + 1cosA

= 512+1513

= 512+135

= 18160

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 22: Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals] - Exercise 22 (A) [पृष्ठ २८०]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 22 Trigonometrical Ratios [Sine, Consine, Tangent of an Angle and their Reciprocals]
Exercise 22 (A) | Q 7 | पृष्ठ २८०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.