Advertisements
Advertisements
प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
उत्तर
Given
`A = 30^@ and B =60^@` .....(1)
To verify
sin (A + B) = sin A cos B + cos A sin B .....(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore
sin(A + B) = sin (30 + 60)
= sin 90
= 1
Now consider RHS of the expression to be verified in equation (2)
Therefore;
`sinA cosB + cosA sinB = sin 30^@ cos 60^@ + cos 30^@ sin 60^@`
`= 1/2 xx 1/2 + sqrt3/2 xx (sqrt3)/2`
`= (1 + 3)/4`
= 1
Hence it is verified that,
Sin (A + B) = Sin A Cos B + cos A sin B
APPEARS IN
संबंधित प्रश्न
If cot θ = 2 find all the values of all T-ratios of θ .
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If 3x = cosecθ = and `3/x= cottheta` find the value of 3`(x^2-1/x^2)`.
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cos A = `(7)/(25)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`