Advertisements
Advertisements
प्रश्न
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
उत्तर
Given:
A = B = 60° ......(1)
To verify:
`tan (A - B) = (tan A - tanB)/(1 + tan Atan B)` ......(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore.
`tan (A - B) = tan (B - B)`
= tan 0
= 0
Now consider RHS of the expression to be verified in equation (2)
Therefore
Now by substituting the value of A and B from equation (1) in the above expression
We get,
`(tan A - tan B)/(1 + tanA tan B) = (tan B - tan B)/(1 + tanB tan B)`
`= 0/(1 + tan^2 B)`
= 0
Hence it is verified that,
`tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
Verify each of the following:
(iii) `2 sin 30^0 cos 30^0`
Verify each of the following:
(iv) `2 sin 45^0 cos 45^0`
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C
From the given figure, find the values of cos C