Advertisements
Advertisements
प्रश्न
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
उत्तर
A = 300
⇒ 2A = 2 × 300 = 600
(iii) tan 2A = tan `60^0 = sqrt(3)`
`(2 tan A)/(1- tan^2 A) = (2 tan 30^0)/( 1-tan^2 30^0
)` = `(2xx(1/sqrt(3)))/(1-(1/sqrt(3))^2` = `((2/sqrt(3)))/(1-(1/3))` = `((2/sqrt(3)))/(2/3)` = `(2/sqrt(3))xx3/2 = sqrt(3)`
∴ tan 2A = `(2tanA)/(1-tan^2A)`
APPEARS IN
संबंधित प्रश्न
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sec B = `(15)/(12)`
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
Evaluate: `5/(cot^2 30^circ) + 1/(sin^2 60^circ) - cot^2 45^circ + 2 sin^2 90^circ`.