Advertisements
Advertisements
प्रश्न
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
उत्तर
Consider the diagram below :
sin θ = `p/q`
i.e.`"perpendicular"/"hypotenuse" = p/h`
Therefore if length of perpendicular = px,
length of hypotenuse = qx
Since
hypotenuse2 = base2 + perpendicular2 ...[Using Pythagoras Theorem]
(qx)2 = base2 + (px)2
q2x2 = p2x2 + base2
q2x2 - p2x2 = base2
(q2 – p2)x2 = base2
∴ base = `sqrt(("q"^2 – "p"^"2")x^2)`
∴ base = `xsqrt("q"^2 - "p"^2) = "base"`
Now
cos θ = `"base"/"hypotenuse" = (xsqrt(q^2 – p^2))/(qx)`
Therefore, cosθ + sinθ
= `(xsqrt(q^2 – p^2))/(qx) + p/q`
= `(sqrt(q^2 – p^2))/(q) + p/q`
= `(p + sqrt(q^2 – p^2))/q`
APPEARS IN
संबंधित प्रश्न
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2