Advertisements
Advertisements
Question
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
Solution
Consider the diagram below :
sin θ = `p/q`
i.e.`"perpendicular"/"hypotenuse" = p/h`
Therefore if length of perpendicular = px,
length of hypotenuse = qx
Since
hypotenuse2 = base2 + perpendicular2 ...[Using Pythagoras Theorem]
(qx)2 = base2 + (px)2
q2x2 = p2x2 + base2
q2x2 - p2x2 = base2
(q2 – p2)x2 = base2
∴ base = `sqrt(("q"^2 – "p"^"2")x^2)`
∴ base = `xsqrt("q"^2 - "p"^2) = "base"`
Now
cos θ = `"base"/"hypotenuse" = (xsqrt(q^2 – p^2))/(qx)`
Therefore, cosθ + sinθ
= `(xsqrt(q^2 – p^2))/(qx) + p/q`
= `(sqrt(q^2 – p^2))/(q) + p/q`
= `(p + sqrt(q^2 – p^2))/q`
APPEARS IN
RELATED QUESTIONS
If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If sin A = `9/41` find all the values of cos A and tan A
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of `(1)/("sin"^2 x) - (1)/("tan"^2 x)`