Advertisements
Advertisements
प्रश्न
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
उत्तर
Given:
A = B = 60° .....(1)
To verify:
sin (A − B) = sin A cos B − cos A sin B ......(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore,
`sin (A - B) = sin (B - B)`
= sin 0
= 0
Now by substituting the value of A and B from equation (1) in the above expression
We get,
`sinAcosB - cosAsinB = sin B cosB - cosBsinB`
= 0
Hence it is verified that,
sin (A − B) = sin A cos B − cos A sin B
APPEARS IN
संबंधित प्रश्न
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cotA = `(1)/(11)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C