Advertisements
Advertisements
प्रश्न
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
उत्तर
Consider the diagram below :
17 cos θ = 15
cos θ = `(15)/(17)`
i.e `"base"/"hypotenuse" = (15)/(17) ⇒ "AB"/"AC" = (15)/(17)`
Therefore if length of AB = 15x, length of AC = 17x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(17x)2 – (15x)2 = BC2
BC2 = 64x2
∴ BC = 8x ...( perpendicular)
Now
sec θ = `"AC"/"AB" = (17)/(15)`
tan θ = `"BC"/"AB" = (8)/(15)`
Therefore
tan θ +2 sec θ
= `(8)/(15) + 2. (17)/(15)`
= `(42)/(15)`
= `(14)/(5)`
= `2(4)/(5)`
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
cos 40° = sin ______°
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
From the given figure, find the values of sin B
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`