Advertisements
Advertisements
प्रश्न
In a right-angled triangle, it is given that A is an acute angle and tan A = `(5) /(12)`.
find the value of :
(i) cos A
(ii) sin A
(iii) ` (cosA+sinA)/(cosA– sin A)`
उत्तर
Consider the diagram below :
tan A = `(5)/(12)`
i.e.`"perpendicular"/"base" = (5)/(12) ⇒ "BC"/"AB" = (5)/(12)`
Therefore if length of AB = 12x, length of BC = 5x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(12x)2 + (5x)2 = AC2
AC2 = 144x2 + 25x2
AC2 = 169x2
∴ AC = 13x ...( hypotenuse)
(i) cos A = `"base"/"hypotenuse" = "AB"/"AC" = (12x)/(13x) = 12/13`
(ii) sin A = `"perpendicular"/"hypotenuse" = (5x)/(13x) = 5/13`
(iii) `(cos "A" + sin "A")/(cos "A" – sin "A")`
= `(12/13+5/13)/(12/13 – 5/13)`
= `(17/13)/(17/7)`
= `17/7`
= `2(3)/(7)`
APPEARS IN
संबंधित प्रश्न
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
In triangle ABC, AD is perpendicular to BC. sin B = 0.8, BD = 9 cm and tan C = 1.
Find the length of AB, AD, AC, and DC.
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ