Advertisements
Advertisements
प्रश्न
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ
उत्तर
2 cos θ = `sqrt(3)`
⇒ cos θ = `sqrt(3)/2`
AB2 = AC2 – BC2
= `2^2 - (sqrt(3))^2`
⇒ 4 – 3 = 1
AB = `sqrt(1)` = 1
sin θ = `"opposite side"/"hypotenuse" = 1/2`
cos θ = `"adjacent side"/"hypotenuse" = sqrt(3)/2`
tan θ = `"opposite side"/"adjacent side" = 1/sqrt(3)`
cosec θ = `"hypotenuse"/"opposite side"` = 2
sec θ = `"hypotenuse"/"adjacent side" = 2/sqrt(3)`
cot θ = `"adjacent side"/"opposite side" = sqrt(3)`
APPEARS IN
संबंधित प्रश्न
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
In the figure of ΔPQR , ∠P = θ° and ∠R =∅° find
(i) `sqrt(X +1) cot ∅`
(ii)`sqrt( x^3 + x ^2) tantheta`
(iii) cos θ
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: cos C
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`