Advertisements
Advertisements
प्रश्न
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ
उत्तर
2 cos θ = `sqrt(3)`
⇒ cos θ = `sqrt(3)/2`
AB2 = AC2 – BC2
= `2^2 - (sqrt(3))^2`
⇒ 4 – 3 = 1
AB = `sqrt(1)` = 1
sin θ = `"opposite side"/"hypotenuse" = 1/2`
cos θ = `"adjacent side"/"hypotenuse" = sqrt(3)/2`
tan θ = `"opposite side"/"adjacent side" = 1/sqrt(3)`
cosec θ = `"hypotenuse"/"opposite side"` = 2
sec θ = `"hypotenuse"/"adjacent side" = 2/sqrt(3)`
cot θ = `"adjacent side"/"opposite side" = sqrt(3)`
APPEARS IN
संबंधित प्रश्न
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If sec `theta = 17/8 ` verify that `((3-4sin^2theta)/(4 cos^2theta -3))=((3-tan^2theta)/(1-tan^2theta))`
Show that:
(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
If 3x = cosecθ = and `3/x= cottheta` find the value of 3`(x^2-1/x^2)`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C
From the given figure, find the values of tan C
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x