Advertisements
Advertisements
प्रश्न
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`
उत्तर
cos θ : sin θ = 1 : 2
The value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`
= `(8(sintheta/2) - 2sintheta)/(4(sintheta/2) + 2sintheta)`
= `(4 sintheta - 2 sintheta)/(2 sintheta + 2 sintheta)`
= `(2 sintheta)/(4 sintheta)`
= `2/4`
= `1/2`
Aliter:
cos θ : sin θ = 1 : 2
cos θ = sin θ
⇒ 2 = `sintheta/costheta`
⇒ 2 = tan θ
AC = `sqrt(1^2 + 2^2)`
= `sqrt(1 + 4)`
⇒ `sqrt(5)`
∴ sin θ = `2/sqrt(5)`, cos θ = `1/sqrt(5)`
The value of `(8 cos theta - 2 sin theta)/(4 cos theta + 2 sin theta)`
= `8(1/sqrt(5)) - 2(2/sqrt(5)) ÷ 4(1/sqrt(5)) + 2 xx (2/sqrt(5))`
= `(8/sqrt(5)) - (4/sqrt(5)) ÷ (4/sqrt(5)) + (4/sqrt(5))`
= `((8 - 4)/sqrt(5)) ÷ ((4 + 4)/sqrt(5))`
= `(4/sqrt(5)) ÷ (8/sqrt(5))`
= `(4/sqrt(5)) xx (sqrt(5)/8)`
= `(4/8)`
= `1/2`
∴ The value is `1/2`
APPEARS IN
संबंधित प्रश्न
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
If cot θ= 1; find the value of: 5 tan2 θ+ 2 sin2 θ- 3
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`