English

If Cos θ = `3/5` , Show that `((Sin Theta - Cot Theta ))/(2tan Theta)=3/160` - Mathematics

Advertisements
Advertisements

Question

If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`

Solution

LHS = `((sin theta - cot theta ))/(2tantheta)`

=`(sin theta costheta /sintheta )/(2(sintheta/costheta))`

=`((sin^2theta - costheta)/sintheta)/((2 sintheta/costheta))`

=` (costheta(sin^2theta-costheta))/(2sin^2theta)`

=`(costheta (1-cos^2theta-costheta))/(2(1-cos^2theta))`

=`(3/5[1-(3/5)^2-3/5])/(2[1-(3/5)^2])`

=`(3/5(1/1-9/25-3/5))/(2(1-9/25))`

=`(3/5((25-9-15)/25))/(2((25-9)/25))`

=`(3/5(1/25))/(2(16/25))`

=`3/(5xx2xx16)`

=`3/160`

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Trigonometric Ratios - Exercises

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 5 Trigonometric Ratios
Exercises | Q 17
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×