Advertisements
Advertisements
Question
If tan `theta = a/b`, show that `((a sin theta - b cos theta))/((a sin theta + bcos theta))= ((a^2-b^2))/(a^2+b^2)`
Solution
It is given that tan `theta = a/b`
LHS = `(a sin theta - b cos theta )/(a sin theta + b cos theta)`
Dividing the numerator and denominator by cos ๐, ๐ค๐ ๐๐๐ก:
`(a tan theta-b)/(a tan theta +b) (∴ tan theta = (sin theta)/(cos theta))`
Now, substituting the value of tan ๐ ๐๐ ๐กโ๐ ๐๐๐๐ฃ๐ ๐๐ฅ๐๐๐๐ ๐ ๐๐๐, ๐ค๐ ๐๐๐ก:
`(a(a/b)-b)/(a(a/b)+b)`
=`(a^2/b-b)/(a^2/b+b)`
= `(a^2 - b^2)/(a^2+b^2) = `RHS
i.e., LHS = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If `sin A = 9/41` compute cos ๐ด ๐๐๐ tan ๐ด
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If cos θ = `7/25` find the value of all T-ratios of θ .
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Evaluate:
cos600 cos300− sin600 sin300
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C