मराठी

In ΔABC, right angled at B. If tan A = 13 , find the value of i. sin A cos C + cos A sin C ii. cos A cos C − sin A sin C - Mathematics

Advertisements
Advertisements

प्रश्न

In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of

  1.  sin A cos C + cos A sin C
  2. cos A cos C − sin A sin C

If ΔABC, ∠B = 90° and Tan A = `1/sqrt(3)`. Prove that

  1. Sin A. cos C + cos A. Sin c = 1
  2. cos A. cos C - sin A. sin C = 0
बेरीज

उत्तर १

tan A = `1/sqrt3`

`"BC"/"AB"=1/sqrt3`

If BC is k, then AB will be `sqrt3k`, where k is a positive integer.

In ΔABC,

AC2 = AB2 + BC2

= `(sqrt3k)^2 + (k)^2`

= 3k2 + k

= 4k2

∴ AC = 2k

sin A = `("Side adjacent to ∠A")/"Hypotenuse" = ("BC")/("AC") = k/(2k) = 1/2`

cos A = `("Side adjacent to ∠A")/"Hypotenuse" = ("AB")/("AC") = (sqrt3k)/(2k) = sqrt3/2`

sin C = `("Side adjacent to ∠C")/"Hypotenuse" = ("AB")/("AC") = (sqrt3k)/(2k) = sqrt3/2`

cos C = `("Side adjacent to ∠C")/"Hypotenuse" = ("BC")/("AC") = (k)/(2k) = 1/2`

(i) sin A cos C + cos A sin C

= `(1/2)(1/2)+(sqrt3/2)(sqrt3/2) `

= `1/4 + 3/4`

= `4/4`

= 1

(ii) cos A cos C − sin A sin C

= `(sqrt3/2)(1/2)-(1/2)(sqrt3/2)`

= `sqrt3/4 - sqrt3/4`

= 0

shaalaa.com

उत्तर २

In ΔABC, ∠B = 90°,

As, tan A = `1/sqrt(3)`

⇒ `("BC")/("AB") = 1/sqrt(3)`

Let BC = x and AB = x = `sqrt(3)`

Using Pythagoras the get

AC = `sqrt("AB"^2 + "BC"^2)`

= `sqrt((xsqrt(3))^2 + x^2)`

= `sqrt(3x^2 + x^2)`

= `sqrt(4x^2)`

= 2x

Now,

(i) LHS = sin A. cos C + cos A . sin C

= `("BC")/("AC") . ("BC")/("AC") + ("AB")/("AC") .("AB")/("AC")`

= `(("BC")/("AC"))^2 + (("AB")/("AC"))^2`

= `(x/(2x))^2 + ((xsqrt(3))/(2x))^2`

= `1/4 +3/4`

= 1

= RHS

(ii) LHS = cos A . cos C - sinA . sinC

= `("AB")/("AC") .("BC")/("AC") -("BC")/("AC") .("AB")/("AC")`

= `(xsqrt(3))/(2x) .x/2x - x/2x.(xsqrt(3))/(2x)`

= `sqrt(3)/4 - sqrt(3)/4`

= 0

= RHS 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.1 | Q 9 | पृष्ठ १८१
आर एस अग्रवाल Mathematics [English] Class 10
पाठ 5 Trigonometric Ratios
Exercises | Q 29

संबंधित प्रश्‍न

 In Given Figure, find tan P – cot R.


State whether the following are true or false. Justify your answer.

sec A = `12/5` for some value of angle A.


If `sin theta = a/b` find sec θ + tan θ in terms of a and b.


If `tan θ = 20/21` show that `(1 - sin theta + cos theta)/(1 + sin theta + cos theta) = 3/7`


Evaluate the Following

`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`


Evaluate the Following

`4/(cot^2 30^@) + 1/(sin^2 60^@) - cos^2 45^@`


Evaluate the Following

4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°


Find the value of x in the following :

`2sin 3x = sqrt3`


Find the value of x in the following :

`sqrt3 sin x = cos x`


Find the value of x in the following :

`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`


If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.


If cos A + cos² A = 1, then sin² A + sin4 A is equal to ______.


If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.


If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.


If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.


In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.


Find the value of sin 45° + cos 45° + tan 45°.


The maximum value of the expression 5cosα + 12sinα – 8 is equal to ______.


In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×