Advertisements
Advertisements
प्रश्न
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
उत्तर
Given:
sin (A − B) = sin A cos B − cos A sin B ......(1)
cos (A − B) = cos A cos B + sin A sin B ......(2)
`To find:
The values of `sin 15^@` and `cos 15^@`
In this problem, we need to find `sin 15^@` and `cos 15^@`
Hence to get `15^@` angle we need to choose the value if A and B such that `(A - B) = 15^@`
So If we choose A = 45° and B = 30°
Then we get (A - B) = 15°
Therefore by substituting A = 45° and B = 30° in equation (1)
We get
`sin(45^@ - 30^@) = sin 45^@ cos 30^@ - cos 45^@ sin 30^@`
Therefore
`sin(15^@) = sin 45^@ cos 30^@ - cos 45^@ sin 30^@` ....(3)
Now we know that,
`sin 45^@ = cos 45^@ = 1/sqrt2, sin 30^@ = 1/2, cos 30^@ = sqrt3/2`
Now by substituting above values in equation (3)
We get,
`sin (15^@) = (1/sqrt2) xx (sqrt3/2) - (1/sqrt2) xx (1/2)`
`= sqrt3/(2sqrt2) - 1/(2sqrt2)`
`= (sqrt3 - 1)/(2sqrt2)`
Therefore
`cos(15^@) = (sqrt3 -1)/(2sqrt2)` ....(6)
Therefore from equation (4) and (6)
`sin(15^@) = (sqrt3 - 1)/(2sqrt2)`
`cos(15^@) = (sqrt3 + 1)/(2sqrt2)`
APPEARS IN
संबंधित प्रश्न
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan alpha = 5/12`
Evaluate the following
`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
Prove that: cot θ + tan θ = cosec θ·sec θ
Proof: L.H.S. = cot θ + tan θ
= `square/square + square/square` ......`[∵ cot θ = square/square, tan θ = square/square]`
= `(square + square)/(square xx square)` .....`[∵ square + square = 1]`
= `1/(square xx square)`
= `1/square xx 1/square`
= cosec θ·sec θ ......`[∵ "cosec" θ = 1/square, sec θ = 1/square]`
= R.H.S.
∴ L.H.S. = R.H.S.
∴ cot θ + tan θ = cosec·sec θ
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.