मराठी

If Sin (A − B) = Sin A Cos B − Cos A Sin B And Cos (A − B) = Cos A Cos B + Sin A Sin B, Find the Values of Sin 15° and Cos 15°. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.

उत्तर

Given:

sin (A − B) = sin A cos B − cos A sin B   ......(1)

cos (A − B) = cos A cos B + sin A sin B ......(2)

`To find:

The values of `sin 15^@` and `cos 15^@`

In this problem, we need to find `sin 15^@` and `cos 15^@`

Hence to get `15^@` angle we need to choose the value if A and B such that `(A - B) = 15^@`

So If we choose  A = 45° and B = 30°

Then we get (A - B) = 15°

Therefore by substituting A = 45° and B = 30° in equation (1)

We get

`sin(45^@ - 30^@) = sin 45^@ cos 30^@ - cos 45^@ sin 30^@`

Therefore

`sin(15^@) = sin 45^@ cos 30^@ - cos 45^@ sin 30^@`  ....(3)

Now we know that,

`sin 45^@ = cos 45^@ = 1/sqrt2, sin 30^@ = 1/2, cos 30^@ = sqrt3/2`

Now by substituting above values in equation (3)

We get,

`sin (15^@) = (1/sqrt2) xx (sqrt3/2) - (1/sqrt2) xx (1/2)`

`= sqrt3/(2sqrt2) - 1/(2sqrt2)`

`= (sqrt3 - 1)/(2sqrt2)`

Therefore

`cos(15^@) = (sqrt3 -1)/(2sqrt2)`  ....(6)

Therefore from equation (4) and (6)

`sin(15^@) = (sqrt3 - 1)/(2sqrt2)`

`cos(15^@) = (sqrt3 + 1)/(2sqrt2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Trigonometric Ratios - Exercise 10.2 [पृष्ठ ४३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.2 | Q 29 | पृष्ठ ४३

संबंधित प्रश्‍न

In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of

  1.  sin A cos C + cos A sin C
  2. cos A cos C − sin A sin C

In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos A = 4/5`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin theta = 11/5`


In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`tan alpha = 5/12`


Evaluate the following

`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`


A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`


Prove that: cot θ + tan θ = cosec θ·sec θ

Proof: L.H.S. = cot θ + tan θ

= `square/square + square/square`  ......`[∵ cot θ = square/square, tan θ = square/square]`

= `(square + square)/(square xx square)`  .....`[∵ square + square = 1]`

= `1/(square xx square)`

= `1/square xx 1/square`

= cosec θ·sec θ  ......`[∵ "cosec"  θ = 1/square, sec θ = 1/square]`

= R.H.S.

∴ L.H.S. = R.H.S.

∴ cot θ + tan θ = cosec·sec θ


If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.


If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.


In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×