Advertisements
Advertisements
प्रश्न
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
पर्याय
1
2
3
4
उत्तर
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = 2.
Explanation:
Now, tan θ + cot θ = `sinθ/cosθ + cosθ/sinθ`
= `(sin^2θ + cos^2θ)/(cosθ sinθ)`
Putting sin2θ + cos2θ = 1
= `1/(cosθ sinθ)` .....(1)
Finding cos θ sin θ
sin θ + cos θ = `sqrt(2)`
Squaring both sides
(sin θ + cos θ)2 = `(sqrt(3))^2`
(sin θ + cos θ)2 = 2
sin2θ + cos2θ + 2 sin θ cos θ = 2
Putting sin2θ + cos2θ = 1
1 + 2 sin θ cos θ = 2
2 sin θ cos θ = 2 – 1
2 sin θ cos θ = 1
sin θ cos θ = `1/2`
cos θ sin θ = `1/2`
Now, tan θ + cot θ = `1/(cos θ sin θ)`
Putting values
= `1/(1/2)`
= 2
APPEARS IN
संबंधित प्रश्न
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
if `sin theta = 3/4` prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
Evaluate the Following:
`tan 45^@/(cosec 30^@) + sec 60^@/cot 45^@ - (5 sin 90^@)/(2 cos 0^@)`
Find the value of x in the following :
cos 2x = cos 60° cos 30° + sin 60° sin 30°
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
If `sqrt2 sin (60° – α) = 1` then α is ______.
What will be the value of sin 45° + `1/sqrt(2)`?
`sqrt(3)` cos2A + `sqrt(3)` sin2A is equal to ______.