Advertisements
Advertisements
प्रश्न
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
If ΔABC, ∠B = 90° and Tan A = `1/sqrt(3)`. Prove that
- Sin A. cos C + cos A. Sin c = 1
- cos A. cos C - sin A. sin C = 0
उत्तर १
tan A = `1/sqrt3`
`"BC"/"AB"=1/sqrt3`
If BC is k, then AB will be `sqrt3k`, where k is a positive integer.
In ΔABC,
AC2 = AB2 + BC2
= `(sqrt3k)^2 + (k)^2`
= 3k2 + k2
= 4k2
∴ AC = 2k
sin A = `("Side adjacent to ∠A")/"Hypotenuse" = ("BC")/("AC") = k/(2k) = 1/2`
cos A = `("Side adjacent to ∠A")/"Hypotenuse" = ("AB")/("AC") = (sqrt3k)/(2k) = sqrt3/2`
sin C = `("Side adjacent to ∠C")/"Hypotenuse" = ("AB")/("AC") = (sqrt3k)/(2k) = sqrt3/2`
cos C = `("Side adjacent to ∠C")/"Hypotenuse" = ("BC")/("AC") = (k)/(2k) = 1/2`
(i) sin A cos C + cos A sin C
= `(1/2)(1/2)+(sqrt3/2)(sqrt3/2) `
= `1/4 + 3/4`
= `4/4`
= 1
(ii) cos A cos C − sin A sin C
= `(sqrt3/2)(1/2)-(1/2)(sqrt3/2)`
= `sqrt3/4 - sqrt3/4`
= 0
उत्तर २
In ΔABC, ∠B = 90°,
As, tan A = `1/sqrt(3)`
⇒ `("BC")/("AB") = 1/sqrt(3)`
Let BC = x and AB = x = `sqrt(3)`
Using Pythagoras the get
AC = `sqrt("AB"^2 + "BC"^2)`
= `sqrt((xsqrt(3))^2 + x^2)`
= `sqrt(3x^2 + x^2)`
= `sqrt(4x^2)`
= 2x
Now,
(i) LHS = sin A. cos C + cos A . sin C
= `("BC")/("AC") . ("BC")/("AC") + ("AB")/("AC") .("AB")/("AC")`
= `(("BC")/("AC"))^2 + (("AB")/("AC"))^2`
= `(x/(2x))^2 + ((xsqrt(3))/(2x))^2`
= `1/4 +3/4`
= 1
= RHS
(ii) LHS = cos A . cos C - sinA . sinC
= `("AB")/("AC") .("BC")/("AC") -("BC")/("AC") .("AB")/("AC")`
= `(xsqrt(3))/(2x) .x/2x - x/2x.(xsqrt(3))/(2x)`
= `sqrt(3)/4 - sqrt(3)/4`
= 0
= RHS
संबंधित प्रश्न
Given sec θ = `13/12`, calculate all other trigonometric ratios.
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
If cot θ = `7/8`, evaluate cot2 θ.
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = 11/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
If 3 tan θ = 4, find the value of `(4cos theta - sin theta)/(2cos theta + sin theta)`
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
If cos (40° + A) = sin 30°, then value of A is ______.
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
`(sin theta)/(1 + cos theta)` is ______.
What will be the value of sin 45° + `1/sqrt(2)`?
In the given figure, if sin θ = `7/13`, which angle will be θ?
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.