हिंदी

If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B. - Mathematics

Advertisements
Advertisements

प्रश्न

If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

योग

उत्तर १

Let us consider a triangle ABC in which CD ⊥ AB.

It is given that

cos A = cos B

⇒ `("AD")/("AC") = ("BD")/("BC")`            ...(1)

We have to prove ∠A = ∠B.

To prove this, let us extend AC to P such that BC = CP.

From equation (1), we obtain

`("AB")/("BD") = ("AC")/("BC")`

⇒ `("AD")/("BD") = ("AC")/("CP")`           ...(By construction, we have BC = CP)          ...(2)

By using the converse of B.P.T,

CD || BP

⇒ ∠ACD = ∠CPB         ...(Corresponding angles)             ...(3)

And, ∠BCD = ∠CBP          ...(Alternate interior angles)               …(4)

By construction, we have BC = CP

∴ ∠CBP = ∠CPB              ...(Angle opposite to equal sides of a triangle)       …(5)

From equations (3), (4) and (5), we obtain

∠ACD = ∠BCD               …(6)

In ΔCAD and ΔCBD,

∠ACD = ∠BCD               ...[Using equation (6)]

∠CDA = ∠CDB               ...[Both 90°]

Therefore, the remaining angles should be equal.

∴∠CAD = ∠CBD

⇒ ∠A = ∠B

Alternatively,

Let us consider a triangle ABC in which CD ⊥ AB.

It is given that,

cos A = cos B

⇒ `("AD")/("AC") = ("BC")/("BC")`

⇒ `("AD")/("BD") = ("AC")/("BC")`

Let `("AD")/("BD") = ("AC")/("BC") = k`

⇒ AD = k × BD                    …(1)

And, AC = k × BC               …(2)

Using Pythagoras theorem for triangles CAD and CBD, we obtain

CD2 = AC2 − AD2           …(3)

And, CD2 = BC2 − BD2               …(4)

From equations (3) and (4), we obtain

AC2 − AD2 = BC2 − BD2

⇒ (k BC)2 − (k BD)2 = BC2 − BD2

⇒ k2 (BC2 − BD2) = BC2 − BD2

⇒ k2 = 1

⇒ k = 1

Putting this value in equation (2), we obtain

AC = BC

⇒ ∠A = ∠B               ...(Angles opposite to equal sides of a triangle)

shaalaa.com

उत्तर २

∠A and ∠B are acute angles

Cos A = cos B S.T ∠A = ∠B

Let us consider right angled triangle ACB.

We have cos A = `"adjacent side"/"Hypotenuse"`

= `("AC")/("AB")`

cos B = `("BC")/("AB")`

cos A = cos B

`("AC")/("AB") = ("BC")/("AB")`

AC = BC

∠A = ∠B

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.1 | Q 6 | पृष्ठ १८१
आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.1 | Q 33 | पृष्ठ २५

संबंधित प्रश्न

State whether the following are true or false. Justify your answer.

cot A is the product of cot and A.


If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin theta = sqrt3/2`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos theta = 7/25`


In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`tan theta = 8/15`


If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`


If sec θ = `13/5, "show that"  (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.


Evaluate the following

tan2 30° + tan2 60° + tan45°


Evaluate the following

`sin^2 30° cos^2 45 ° + 4 tan^2 30° + 1/2 sin^2 90° − 2 cos^2 90° + 1/24 cos^2 0°`


Evaluate the Following

4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°


`(sin theta)/(1 + cos theta)` is ______.


A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`


Prove that sec θ + tan θ = `cos θ/(1 - sin θ)`.

Proof: L.H.S. = sec θ + tan θ

= `1/square + square/square`

= `square/square`  ......`(∵ sec θ = 1/square, tan θ = square/square)`

= `((1 + sin θ) square)/(cos θ  square)`  ......[Multiplying `square` with the numerator and denominator]

= `(1^2 - square)/(cos θ  square)`

= `square/(cos θ  square)`

= `cos θ/(1 - sin θ)` = R.H.S.

∴ L.H.S. = R.H.S.

∴ sec θ + tan θ = `cos θ/(1 - sin θ)`


If sec θ = `1/2`, what will be the value of cos θ?


If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.


If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.


If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.


If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.


If sin θ – cos θ = 0, then find the value of sin4 θ + cos4 θ.


Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×