Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
рдЙрддреНрддрд░
We know that `tan theta = "ЁЭСЬЁЭСЭЁЭСЭЁЭСЬЁЭСаЁЭСЦЁЭСбЁЭСТ ЁЭСаЁЭСЦЁЭССЁЭСТ"/"ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ" = 8/15`
Now consider a right-angled Δle ABC.
By applying Pythagoras theorem
ЁЭР┤ЁЭР╢2 = ЁЭР┤ЁЭР╡2 + ЁЭР╡ЁЭР╢2
ЁЭСе2 = 82 + 152
ЁЭСе2 = 225 + 64 = 289
`x = sqrt289 = 17`
`sin theta = "ЁЭСЬЁЭСЭЁЭСЭЁЭСЬЁЭСаЁЭСЦЁЭСбЁЭСТ ЁЭСаЁЭСЦЁЭССЁЭСТ"/"тДОЁЭСжЁЭСЭЁЭСЬЁЭСбЁЭСТЁЭСЫЁЭСвЁЭСаЁЭСТ" = 8/17`
`cos theta = "ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ"/"тДОЁЭСжЁЭСЭЁЭСЬЁЭСбЁЭСТЁЭСЫЁЭСвЁЭСаЁЭСТ" = 15/17`
`tan theta = "ЁЭСЬЁЭСЭЁЭСЭЁЭСЬЁЭСаЁЭСЦЁЭСбЁЭСТ ЁЭСаЁЭСЦЁЭССЁЭСТ"/"ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ" = 8/15`
`cot theta = 1/tan theta = 1/(8/15) = 15/8`
`cosec theta = 1/sin theta = (1/8)/17 = 17/8`
`sec theta = 1/cos theta= (1/15)/17 = 17/15`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
Evaluate the Following
(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.