Advertisements
Advertisements
प्रश्न
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
उत्तर
tan2 30° + tan2 60° + tan2 45° ....(i)
By trigonometric ratios we have
`tan 30^@ = 1/sqrt3 tan 60^@ = sqrt3 tan 45^@ = 1`
By substituting above values in (i), we get
`[1/sqrt3]^2 + [sqrt3]^2 + [1]^2`
`=> 1/3 + 3 + 1 => 1/3 + 4`
`=> (1 + 12)/3 = 13/3`
APPEARS IN
संबंधित प्रश्न
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sec theta = 13/5`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
`(1 + tan^2 "A")/(1 + cot^2 "A")` is equal to ______.
If cos A = `4/5`, then the value of tan A is ______.
If sin A = `1/2`, then the value of cot A is ______.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.