Advertisements
Advertisements
प्रश्न
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
उत्तर
We know `sin theta = "𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒"/"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"`
Let x be the adjacent side
By applying Pythagoras theorem
𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2
b2 = a2 + x2
x2 = b2 − a2
`x = sqrt(b^2 - a^2)`
`sec theta = (AB)/(BC) = b/(sqrt(b^2 - a^2))`
`tan theta = (AB)/(BC) = a/(sqrt(b^2 - a^2))`
`sec theta + tan theta = b/(b^2 - a^2) + a/(sqrt(b^2 - a^2))`
`= (b + a)/(sqrt(b^2 - a^2)) = (b+ a)/sqrt((b + a)(b - a)) = (b + a)/sqrt(b + a) - 1/(sqrt(b - a)) = sqrt((b + a)/(b - a))`
APPEARS IN
संबंधित प्रश्न
In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of
- sin A cos C + cos A sin C
- cos A cos C − sin A sin C
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
Find the value of x in the following :
`sqrt3 sin x = cos x`
Find the value of x in the following :
`sqrt3 tan 2x = cos 60^@ + sin45^@ cos 45^@`
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
`(sin theta)/(1 + cos theta)` is ______.
Given that sinα = `1/2` and cosβ = `1/2`, then the value of (α + β) is ______.
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.