Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
`sqrt3 sin x = cos x`
उत्तर
We have
`sqrt3 sin x = cos x`
Now by cross multiplying we get,
`sqrt3 sin x = cos x``
`=> sin x/cos x = 1/sqrt3`.........(1)
Now we know that
`sin x/cos x = tan x` .......(2)
Therefore from equation (1) and (2)
We get
`tan x = 1/sqrt3` .......(3)
since
`tan 30^2 = 1/sqrt3` ....(4)
Therefore, by comparing equation (3) and (4) we get,
`x = 30^@`
Therefore
`x = 30^@`
APPEARS IN
संबंधित प्रश्न
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos A = 4/5`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cos theta = 7/25`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
`(sin theta)/(1 + cos theta)` is ______.
The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.
Find the value of sin 0° + cos 0° + tan 0° + sec 0°.